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ABSTRACT: In this paper, F.E.M with continuum damage mechanics (C.D.M) is applied 
to simulate failure of carbon fiber sheet (CF-sheet) reinforced concrete members under static 
and cyclic loads, as well as adhesive fracture of CF-sheet reinforced concrete block. The 
analytical results are generally consistent with experimental data and valuable for 
understanding failure behaviors of CF-sheet reinforced concrete. A constitutive equation for 
elasto-plastic damageable solids is formulated by using Drucker-Prager’s equivalent stress 
and identified by the uniaxial compressive and tensile experimental results for concrete , 
tensile results for CF-sheet. And it was concluded that structural ultimate strength and 
fatigue durability by C.D.M. was very useful.  
 
Keywords: Ultimate strength, Fiber sheet, Fatigue, Adhesive fracture, Continuum Damage 
Mechanic 
 
1. INTRODUCTION 
 
Concrete is a standard brittle material in civil engineering. Reinforced concrete structures 
with steel bar resisting tension have been used for the infrastructures such as buildings, 
bridges and tunnels, due to its durability and economy. In recent years, special attention has 
been paid to CF-sheet to resist against earthquake repair damage and prevent separation 
failure.The CF-sheet is of light weight (1/5 of steel),high strength (10 times of steel),high 
rigidity and high durability as well as easy to construct. Considering future development of 
CF-sheet, it is important to establish the analytical evaluation of the strength and durability 
of concrete structural members reinforced with CF-sheet. 
The elasto-plastic model, the smeared crack model and the discrete crack model considering 
cracking in concrete have been proposed as the analytical model for reinforced concrete 
(RC) structures. On the other hand, there has been much progress in the application of 
C.D.M to metal materials. The mechanical deterioration is represented by the internal state 
variable D called damage variable and the strain energy release rate Y conjugate with D in 
damage mechanics. It is expected as a branch of mechanics essentially applicable to fatigue 
fracture and residual life prediction as well as static and dynamic strength analysis at the 
material test and structure level. The validity of the application of damage mechanics to 
concrete structures has been recognized through the researches on reinforced concrete rigid 
frames ,short fiber-reinforced concrete and high-strength concrete .   
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The development of the analysis program based on damage mechanics and its experimental 
validations are conducted in the present study for the purpose of establishing the method for 
ultimate strength and lifetime evaluation of the concrete structural  members reinforced 
with CF-sheet. In the application of damage mechanics models to concrete and the CF-sheet, 
the two-dimensional elasto-plastic damage constitutive equation is formulated by using 
Drucker-Prager’s equivalent stress in order to consider the difference between the tensile and 
the compressive strength of concrete. The formulated constitutive equation is implemented in 
the two-dimensional finite element program. The material constants are identified by using 
the material test results under uniaxial tension and compression. 
 
2. FORMULATION AND IDENTIFICATION OF ELASTO-PLASTIC 
 DAMAGE CONSTITUTIVE EQUATION 
 

2.1 Elasto-Plastic Damage Constitutive Equation 
 
The dissipation potential for the growth of plastic strains, which is the sum of the plastic 
potential and the damage potential, is expressed by the following equation: 
 
 
 

(1) 
 
Where     is the potential for the growth of plastic strains, which is a function of the 
effective stress  , the plastic hardening parameter   and the scalar damage variable   . 
   is the potential for the evolution of damage, which is a function of the strain energy 
release rate   , the equivalent plastic strain   and the damage variable   . 
In the formulation of the constitutive equation, the yield function is assumed as follows: 
 

(2) 
(3) 

 
(4) 

Where the following notations are used:     ;effective Drucker-Prager’s equivalent stress, 
   ;the yield stress,   ;the material parameter,  ;the first invariant of stress and  ;the 
second invariant of deviatoric stresses. 
The relation between the stress increment and the strain increment is expressed by the 
following equation: 

(5) 
 
Where     is the tangential stress-strain matrix considering the elasto-plastic damage, 
which relates the stress increment with the strain increment. The damage evolution equation 
as given by the following equation is used in the present study. 
 

(6) 
 
Where   and   are the material constants. It is assumed that the damage evolves with an 
increase of the equivalent plastic strain. The strain energy release rate   is a function of 
Young’s modulus    and equivalent stress   as expressed by the following equation: 
 

(7) 
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4.1  A New Constitutive Equation for shear behavior 
 
Most of ultimate strength of concrete structures reinforced with the CF-sheet has been 
determined by adhesive fracture mode  between the CF-sheet, epoxy resin and concrete 
surface.Therefore, a new equivalent stress was introduced to evaluate the mode as follows . 
 

(8) 
 
Where the following notations are used:      and     ; the material parameter,       ; 
Macaulay’s brackets,       ;  maximum principle stress,       ; maximum shear stress. 
Other parameters are same in equation(4). 
   and   were determined by the adhesive strength test shown in Figure.14. In this test, the 
adhesive length was changed 20,40,80 (mm) (refer to Table 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The relationship between maximum quasi-static load and adhesive length is shown in 
Figure.15. The load becomes bigger corresponding to the adhesive length, but the relation is 
nonlinear. It was found that there is a certain effective length of the CF-sheet to resist the 
shear deformation in quasi-static loading condition. 
 
 

E (Young’s modulus) 30,000 (MPa) 
ν(Poisson’s ratio) 0.17 
α(plastic potential) 0.85 
β(plastic potential) 0.035 
δ(plastic potential) 0.01 
σy (yield stress) 1.50 (MPa) 
σf (fatigue limit stress) 1.875 (MPa) 
K (plastic hardening) 45.0 (MPa) 
n (plastic hardening) 0.175 
Spf1 (damage parameter) 9.25×10-4 (MPa)
Spf2 (damage parameter) 1.55 
Se1 (damage parameter) 4.25×10-3 (MPa)
Se2 (damage parameter) 5.375 
εpD (damage threshold) 0.00 
Dcr (critical damage) 7.45×10-2 

( ) maxmax
2/1'

21 τδσβασ +++= JIeq

β δ
maxσ maxτ

β δ

   CASE Adhesive Adhesive
length L (mm) width W (mm)

CASE1 80 80
CASE2 40 80
CASE3 20 80

Figure 14. Adhesive strength test

Figure 15. Maximum load and 
 adhesive length 

Table 3. List of test case 

Table 4. Material property 
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4.2   Adhesive Fracture Analysis under Cyclic Loading 
 
The damage evolution would be hypothesized following equation. The plastic damage is 
adopted the former relation of equation (9) and the elastic damage is adopted the later 
relation of equation  (9), respectively. 
 
 

(9) 
 
 
 Where     and     are material constants regarding plastic fatigue and    is the 
increment of equivalent plastic strain.     and     are material constants regarding elastic 
fatigue.    is the increment of equivalent elastic strain. 
The CF-sheet and epoxy resin were hypothesized as linear elastic material in this section . 
The 2-dimensional model for F.E.M and the applied cyclic loading, which has 5 (Hz) of 
frequency for CASE3 are shown in Figure 16 and Figure 17. Finally, the material property 
was shown in Table 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The relationship between cyclic fracture number and maximum load is shown in Figure 18, 
Figure 19 and Figure 20.Herein, the diamond and square dots remark the experimental and 
analytical results, respectively. In these cases, the analytical results are a good agreement 
comparable with the experimental results. Finally, the damage distribution is shown in 
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(3) The adhesive fracture mode has been identified by an another equivalent stress and 
which has corresponded well with experimental fatigue fracture number. The validity of 
present analysis has especially been demonstrated by the fact that adhesive fracture has well 
been simulated. 
(4) The repair and the maintenance to increase the lifetime are important technologies for 
concrete structures. The quantitative evaluation of the chemical aging, the mechanical 
damage accumulation due to earthquakes and fatigue and their coupling behaviors is 
necessary for the appropriate maintenance. Therefore,  C.D.M will be a valid  method to 
evaluate the lifetime and the deterioration of ultimate ability of concrete structures. 
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