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ABSTRACT 

Due to the existence of uncertainties associated with mechanical properties, geometric 

configuration, loadings, and imperfect knowledge associated with the evaluations and 

predictions of material deterioration, probabilistic methods have been applied in the design 

and performance assessment of concrete structures to quantify these unavoidable 

uncertainties. This paper presents an approach for improving the accuracy in the life-cycle 

reliability assessment of reinforced concrete (RC) structures subjected to the carbonation by 

the Sequential Monte Carlo Simulation (SMCS). Using SMCS, multiple random variables 

related to observation information can be updated simultaneously, even if non-Gaussian 

random variables are involved and relationships between the observation information and 

random variables are nonlinear. The effect of the magnitude of inspected carbonation depth 

on the updated estimates of reliability associated with the occurrence of steel corrosion is 

discussed in this paper. 

Keywords.  Updating, Failure Probability, Sequential Monte Carlo Simulation, Carbonation, 

Reinforced Concrete 

INTRODUCTION 

As carbonation progresses, the corrosion could become serious enough to deteriorate not only 

the serviceability, but also the maintainability of the structural performance. When 

carbonation reaches at the depth of the rebar embedded into the concrete, the high alkalinity 

of the concrete pore solution is neutralised and hydration products are dissolved then to lower 

the buffering capacity of hydrations against a pH fall. At this moment, the passivation layer 

on the steel surface, which otherwise would protect the steel embedment from a corrosive 

environment, is destroyed, and steel is directly exposed to oxygen and water, eventually to 

corrode (Ann et al., 2010). Corrosion initiation could lead to cracking due to corrosion 
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products and concrete cover spalling. Cracking and/or spalling accelerate the corrosion rate 

and finally lead to serviceability failure and a deterioration of long-term structural 

performance. Such deterioration will reduce the service life of structures and increase the 

life-cycle cost of maintenance actions. Various environmental and mechanical stressors, and 

structural variables affect the degradation mechanism of RC structures subjected to the 

carbonation. 

However, the effects of stressors and variables are very difficult to predict, as these effects 

vary in time and space. Because of the presence of uncertainties, it is necessary that structural 

long-term performance be treated based on reliability concepts and methods (Ellingwood, 

2005 and Frangopol, 2010). Stochastic treatment of structural design problems takes into 

account the uncertain nature of structural performance making a reliable design of RC 

structures possible (Frangopol et al.,1997 and RILEM,1998). 

Life-cycle reliability estimation of RC structures depends on many aleatory and epistemic 

uncertainties involved in the evaluation and prediction of carbonation progress. For existing 

structures it is possible to reduce epistemic uncertainties using visual inspection, 

nondestructive inspection, and/or monitoring results, and to improve the estimation accuracy 

of the present and future failure probability. However, the inspection and/or monitoring 

results relate to many random variables. When relationships between the inspection and/or 

monitoring results and random variables are nonlinear or non-Gaussian variables are involved 

in the life-cycle reliability estimation, a rigorous theoretical approach is generally impossible 

to implement in realistic cases. An approximate solution can, however, be found by using 

several approaches. The Monte Carlo approach is in general used because of its versatility. 

MC based methods for non-linear filtering techniques have been developed since the 1990s. 

These methods include MC filter, bootstrap filter, recursive MCS, sequential MCS, the 

sampling importance resampling method, and the sequential importance sampling with 

resampling (Gordon et al., 1993, Kitagawa, 1996 and Ristic et al., 2004). 

In this paper, life-cycle reliability analysis of RC structures subjected to the carbonation is 

conducted. Failure probability is estimated by the limit state comparing the carbonation depth 

with concrete cover. To improve the accuracy in the life-cycle reliability assessment of RC 

structures, multiple random variables related to the inspected carbonation depth are updated 

using the Sequential Monte Carlo Simulation (SMCS). The effect of the magnitude of 

inspected carbonation depth on the updated estimates of reliability associated with the 

occurrence of steel corrosion is discussed in the illustrative example. 

SEQUENTIAL MONTE CARLO SIMULATION 

Even though aleatory uncertainty cannot be reduced, improvement in our knowledge or in the 

accuracy of predictive models will reduce the epistemic uncertainty (Ang and De Leon, 2005). 

This means that for existing structures, the uncertainties associated with predictions can be 

reduced by the effective use of information obtained from visual inspections, field test data 

regarding structural performance, and/or monitoring. This information helps engineers to 

improve accuracy of structural condition prediction. However, the updated random variables 

do not follow, in general, widely used PDFs (such as normal, lognormal, etc.). The 

difficulties of the solution in Bayesian updating depend on the relationships between 

observed physical quantities, such as inspection results, and the PDFs of associated random 

variables. In this study, SMCS is applied to the updating of random variables. The reliability 

estimation using SMCS is briefly described as follows. The detailed procedure was given by 

Yoshida (2009). 



The state space model consists of two processes, the time updating process and the 

observation updating process. The time updating process is the one step ahead prediction 

based on the information at the (k-1)-th step. The predicted state vector is 

),( 1/11/ kkkkk wxFx     (1) 

where wk is system noise represented by the noise involved in the prediction process. It is 

assumed that observation information zk is a function H of state vector xk/k and observation 

noise vk as 
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The PDF of these noises, p(wk) and p(vk), are assumed known and independent. The real 

world problems, however, often involve nonlinearity and non-Gaussian noises.
 
Figure 1 

shows the flowchart of the method. The flowchart starts by assuming samples drawn from the 

distribution at (k-1) th step 
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The superscript (j) denotes the generated j-th sample realization. The PDF is approximately 

expressed by the samples with Dirac delta function δ as 
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The above approximation form of PDF is called empirical PDF. The samples of the k-th step 

before observation updating are obtained by simply substituting them into state Equation (1) 

),(
)()(

1/1

)(

1/

j

k

j

kk

j

kk wxFx     (6)
 

The empirical PDF of the k-th step before updating is similarly estimated by the sample 

realization 
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The PDF after updating is 
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The term ak
(j)

 is the weight (likelihood ratio) of sample j. When a new observation is available, 

the weights are re-calculated and the approximate posterior PDF is sequentially updated. 

However after a few steps the confidence in the estimated PDF deteriorates. This is often 

called weight degeneracy or sample impoverishment. To alleviate this problem, a resampling 

step is introduced by Arulampalam et al. (2002) and Ristic et al. (2004).  



 

ILLUSTRATIVE EXAMPLE 

Deterioration of Concrete. Many researchers suggested that the carbonation of RC 

structures could be divided into four stages (Sung et al., 2010). In the first stage, the initiation 

stage, the carbonation depth of concrete has not yet reached a critical threshold. The rebars do 

not begin to corrode, so that the degradation of structural performance is not significant. As 

carbonation propagates, the corroded rebars in the second stage, the propagation stage, tend 

to grow in volume and generate a dilative pressure towards the surrounding concrete. At the 

same time, the effective cross-sectional area of the corroded rebars has been reduced. At the 

end of the propagation stage, the corrosion amount of rebar reaches a threshold value, 

resulting in the cracking of the cover concrete. If carbonation continues, the structure will 

further deteriorate due to the widening cracks, as depicted by the acceleration stage. Finally, 

severe degradation of structural performance will occur in the deterioration stage due to 

intensive cracks in the concrete and severe corrosion of the rebars. For each carbonation stage, 

if concrete properties, corrosion depths of rebars and the varied strength of rebars can be 

determined quantitatively, time-dependent structural capacity can be calculated. However, it 

is very difficult to evaluate the steel weight loss and its spatial distribution in concrete 

structures subjected to the carbonation. In this study, reliability analysis for concrete 

structures in the initiation stage is conducted. Failure probability is estimated using the 

performance function comparing the carbonation depth with concrete cover. That is 
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Figure 1. Flowchart of reliability estimation using SMCS 
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where x1 is the construction error associated with concrete cover, x2 is the random variable 

representing model uncertainly. X is the depth of carbonation (Izumi, 1988, Nakayama and 

Matsubara, 1992, and Chien et al., 2008), α is the environment coefficient, κ is the material 

coefficient, γ is the coefficient associated with water to cement ratio, x3 is the construction 

error associated with water to cement ratio, and WC is water to cement ratio. In the 

illustrative example, α and κ are assumed to be 1.0. Table 1 shows assumed statistics and 

probabilistic distribution of random variables x1 to x3. 

Table 1. Parameters of random variables 

 

 

 

 

Table 2. List of inspection date 

 

 

 

 

 

Modeling of Observational Date. It is assumed that the carbonation depths are provided 

by the phenolphthalein test at the 30 years after construction. In the illustrative example, 

Cases 1 to 3 with different carbonation depths are considered as listed in Table 2. 

Carbonation depths of Cases 1, 2 and 3 are 5%, 50%, and 95% percentiles of those estimated 

by ordinary MCS with random variables listed in Table 1, respectively. SMCS is not used in 

Case 0. From Equations (10) and (11), when depth of carbonation by the phenolphthalein test 

is given, the observation equation based on the observation date (i.e., carbonation depth) is 
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where z is the observed depth of carbonation from the concrete surface, and ν is the 

observation noise. ν is assumed to be a standard normal distribution with the standard 

deviation of 1.0. 

Time-Dependent Reliability Analysis of RC Structure. Computational results given 

by SMCS are almost the same for all cases if the number of samples is more than 500,000. 

Therefore, the number of samples is set to 500,000. Figure 2 shows the relationship between 

the failure probability associated with the occurrence of rebar corrosion due to the 
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carbonation and time after construction. In addition, the updated failure probabilities using 

the inspected carbonation depth at 30 years are shown in Figure 2. Since depth of carbonation 

provided by the phenolphthalein test in Cases 1 and 2 are less than that expected by random 

variables listed in Table 1, the failure probability at 30 years after updating is much smaller 

than that before updating (Case 0). However, the failure probability in Case 3 is much higher 

than that in Case 0.  

Correlations between R and S used in Equation (9) for Case 2 are shown in Figure 3. Figures 

3(a) and (b) show R and S before and after updating at 30 years, respectively. All parameters 

of random variables related to the observational data can be updated by SMCS 

simultaneously using the joint probability density functions(PDFs) of the random variables 

(including means, COVs and correlations). R and S are statistically independent before 

updating. As these two random variables are updated using the same inspection results, it is 

confirmed in Figure 3 that they have to be correlated after updating.  

 

 

 

 

 

 

 

 

 

Figure 2. Relationship between time and failure probability 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

The procedure to obtain the failure probabilities of concrete structures subjected to 
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Figure 3. Relationships between R and S 

before and after updating at 30 years (Case 2) 



carbonation using SMCS was presented in this study. The carbonation depth provided by the 

phenolphthalein test was used as observational data. The effect of the magnitude of inspected 

carbonation depth on the updated estimates of reliability associated with the occurrence of 

rebar corrosion was discussed in the illustrative example. 

Using SMCS, multiple random variables related to observational information can be updated 

simultaneously. Updating makes possible to improve the accuracy in the life-cycle reliability 

assessment of concrete structures. Further research is needed on the reliability of RC 

structures subjected to both the carbonation and other environmental stressors such as 

airborne chloride. Also, spatial distribution of carbonation over the entire concrete structures 

have to be considered. 
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