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ABSTRACT

In Japan, cement manufacturing companies have been actively developing low-heat and low-
shrinkage type blast-furnace slag-cement, which yields lower heat generation characteristics
than conventional Portland blast-furnace cement and allows for the control of chemical
shrinkage caused by cement hydration.
We investigated not only the potential performance of this type cement but also the
characteristics of concrete prepared with the cement and its ability to reduce environmental
impacts. Furthermore, we investigated and evaluated the effectiveness of application of this
cement to the concrete portion of bridge parapet rails and piers as well as to bridge
foundation work. The results showed that concrete prepared with this cement, compared to
conventional blast-furnace cement-based concrete, can prevent generation of deleterious
cracks resulting from hydration heat and shrinkage, and also that this cement is effective in
decreasing the chloride permeability of concrete. Furthermore, this cement, compared to
ordinary Portland cement, could significantly reduce environmental impacts.

Keywords. CO2 emissions, autogenous shrinkage, chloride permeability, application to
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INTRODUCTION

In the bridge construction sector, as well as other technical industries, there is an increasing
need to adopt materials and construction techniques that can minimize potential
environmental impacts. A recent case study(Tezuka, Kajiwara,Saito,& Miyazato 2010,
pp.91-94) presents calculations for CO2 emissions generated during the construction of a
prestressed concrete (PC) bridge superstructure. Figure 1 shows the estimated CO2 emission
percentages from each component of the PC bridge superstructure - calculated for a four-
span continuous PC box girder bridge with a total length of 200 m. The results show that the
level of CO2 emission during construction of a PC bridge superstructure is highly dependent
on the materials used and it is expected that other RC structures, including piers, may follow
a similar trend. Presumably, energy consumption is also dependent on the materials used.
Therefore, in order to effectively reduce environmental impacts associated with bridge
construction, it is critical to evaluate and implement an effective technique for selecting the
most appropriate bridge-building materials to use, including the type of concrete.

Figure 1. Percentage of carbon dioxide emissions
(Prestressed concrete superstructure)

Although Portland cement has been widely used in Japan for general concrete structures such
as bridges, the production process generates relatively high environmental impacts due to the
consumption of fossil fuels and de-carbonation of limestone and the resulting CO2 emissions.
In contrast, blast furnace slag cement － a blended cement composed of blast furnace slag
powder, which is generated as a by-product of pig iron production in ironworks, and
Portland cement－ is not only able to minimize environmental impacts caused by fossil fuel
consumption and/or CO2 emissions but can also effectively suppress the alkali-silica reaction
and the process of chloride ion infiltration(Japan Society of Civil Engineers 2007). However,
because of its high early-stage strength, the type of blast furnace slag cement used in Japan
shows higher adiabatic temperature rise and higher autogenous shrinkage than Portland
cement, thereby increasing the possibility of cracks resulting from hydration heat and
shrinkage. Therefore, due to the increased possibility of deleterious cracks forming, blast
furnace slag cement is currently subject to restrictions when applied to large concrete
structures such as expressway bridges.
When compared to conventional blast furnace slag cement and Portland cement, low-heat
and low-shrinkage type blast furnace slag cement (LLB Cement) shows a lower adiabatic
temperature rise and a level of hydration-induced shrinkage similar to that of Portland
cement, reducing the possibility of cracks resulting from hydration heat and shrinkage. In
addition to these advantages, LLB Cement is also more effective in reducing environmental
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impacts because of the higher blending amount of blast furnace slag used in its manufacture
compared with ordinary blast furnace slag cement(Sakai 2010, pp.43-46).
In this study, we investigated not only the potential performance of this LLB Cement but
also the characteristics of concrete prepared with it and the effects of its use on
environmental impact reduction. Furthermore, we investigated and evaluated its
effectiveness when used in the concrete portion of bridge superstructures and piers, as well
as bridge foundation work.

PROPERTIES OF LLB CEMENT

Comparison of Portland Blast-furnace Slag Cement and LLB Cement. Table 1
provides a comparison between the conventional blast-furnace slag cement (as specified in
JIS (Japanese Industrial Standards) R 5211 and generally used for construction purposes in
Japan) and LLB Cement in terms of specific surface, chemical composition, and the blending
amount of blast-furnace slag. LLB Cement is designed to have a small specific surface and a
large amount of blended blast-furnace slag in order to reduce hydration heat. This cement is
also designed to have a small specific surface and an increased amount of sulfur trioxide
(SO3) in order to reduce autogenous shrinkage.
When compared to conventional blast furnace slag-based concrete, concrete prepared with
LLB Cement exhibits lower early-strength development but improved long-term strength.
Therefore, although the strength of concrete prepared with conventional blast-furnace slag
cement can be evaluated using the strength test values of core specimens after 28 days, it is
preferable to evaluate the strength of LLB Cement-based concrete after 56 days or more.

Table 1. Comparison of blast-furnace slag cement and LLB Cement

Type of cement

Conventional blast-furnace
slag cement LLB Cement

JIS R 5211 Actual
results Specifications Actual

results

Specific surface (cm2/g) 3000 and over 3930 3000 and over
3500 and less 3400

Chemical
composition (%)

Sulfur
trioxide SO3

4.0 and less 2.04 3.5 and over
4.0 and less 3.9

Blast-furnace slag (%) more than 30
60 and less 42 56 and over

60 and less 58

Compressive
strength of
concrete

(W/C=0.5)

7 days - 23.0 - 21.2

28 days - 39.7 - 33.6

Properties of Adiabatic Temperature Rise. The adiabatic temperature rise of concrete
can be calculated using Eq.(1)(Japan Society of Civil Engineers 2007). Thus, in accordance
with the Standard Specifications for Concrete Structures (Japan Society of Civil Engineers
2007) and test values provided by the manufacturer, the adiabatic temperature rises of
concrete prepared with three different types of cement were calculated, as shown in Figure 2,
based on the assumptions that W/C=50%，the amount of cement used was 320kg/m3, and
the casting temperature was 20˚C. As shown in Fig. 2, LLB Cement-based concrete
generates less heat than blast-furnace slag cement and ordinary Portland cement (exhibiting
approximately 70－80% of the adiabatic temperature rise of these two types of cement).
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Diffusion coefficient of chloride ion. The diffusion coefficient of chloride ion in
concrete is given by Submergence Test in Salt Water (JSCE-G 572-2007). The results are
shown in Table 2. As noted, the diffusion coefficient of chloride ion is reduced through the
use of LLB Cement-baced concrete.

Table 2: diffution coefficient(cm2/year)

Chloride ion concentration can be calculated using Fick’s second law of diffusion equation
(Eq.(2))( Japan Society of Civil Engineers 2007 :解 10.3.2).

：Chloride ion concentration(Kg/㎥)at depth x(cm) and time t (year)

C0：Chloride ion concentration at the surface(Kg/㎥)

௔௣：Apparent chloride ion difficient

( )：Error function

௖௟：Safety factor for prediction precision
With apparent chloride ion difficient of tree types of cements, chloride ion concentration in
concrete is calculated, as shown in Figure 4, based on the assumptions that W/C=50%,
x=3.5cm,and C0= 2.0Kg/㎥ that is the general surface choride ion concentration in concrete
structure at 0.5 Km from seashore in areas with a high volume of air-boun salt. ( Japan
Society of Civil Engineers 2007 :pp.113)

Figure. 4. Interannual prediction of chloride ion concentration

Type of cement
W/C

50% 40%

Portland cement 1.18 0.815

Portland blast-furnace slag cement 0.754 0.439

LLB-Cement 0.382 0.300

௖௟ ଴
௫

ଶඥ஽ೌ೛∙௧
(2)
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Table 4: Use of LLB Cement to Uratakao bridge

Name

Concrete volume (m3) LLB Cement

Portland
cement

LLB-
Cement

Total
volume

Unit
quantity

of
cement
(kg/m3)

Weight
of cement

(ton)

Substructure A1
Foundation (Pile) 146 0 146

Abutment 0 716 716 328 235

Substructure P1
Foundation
(Caisson) 1,884 2,389 4,273 292 698

Pier 0 2,577 2,577 328 845

Substructure P2
Foundation (Pile) 5,955 0 5,955

Pier 0 2,244 2,244 328 736

Substructure P3
Foundation (Pile) 2,521 0 2,521

Pier 0 1,479 1,479 328 485
Substructure A2 Abutment 0 1,368 1,368 328 449

Superstructure (PC box girder) 6,750 2,299 9,049 365 839
Concrete barrier curb 0 740 740 316 234

Total 17,256 13,812 31,068 4,521

Percentage 55.5 44.5 100.0

CONCLUSIONS

This study found that:

 LLB Cement-based concrete has lower heat generation characteristics than ordinary
blast-furnace slag cement or Portland cement, with only approximately 70－80% of
the adiabatic temperature rise of these two types of cement.

 LLB Cement-based concrete allows for more reduction of autogenous shrinkage than
conventional blast-furnace slag cement. LLB Cement-based concrete also tends to
produce less autogenous shrinkage than Portland cement-based concrete.

 The use of LLB Cement allows CO2 emissions due to cement production to be
reduced to about 60% of those of ordinary Portland cement and about 30% of those of
type B Portland blast-furnace slag cement.

 LLB Cement-based concrete is effective in decreasing the chloride permeability of
concrete.

 It is concluded that LLB Cement can be applied to the construction of bridges and that,
based on previous application case studies, it can significantly reduce CO2 emissions
and other environmental impacts generated during the cement manufacturing process.
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