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ABSTRACT 

Rheological computer simulations of the Abrams cone are introduced in this paper. A 

Computational Fluid Dynamics software called OpenFOAM (https://www.openfd.o.uk) was 

used for the calculations. An easy-to-use model for obtaining yield stress and plastic 

viscosity of concrete on e.g. the building site is developed. Promising results show that both 

yield stress as well as plastic viscosity can be determined by this simple test.  

Keywords.  Numerical Simulation, Self-Compacting Concrete, Slump Flow, Bingham 

Material Model 

INTRODUCTION 

Self-Compacting Concrete (SCC) has since it was first developed in Japan found its way into 

the precast concrete industry and in many applications on the building sites around the 

world. Casting without the need for vibrating is an important advantage when it comes to 

congested geometries of the reinforcement and the formwork, as well as an improvement of 

the ergonomic aspects for concrete workers. Good performance of SCC includes filling 

ability of the formwork, passing ability through the reinforcement and resistance to 

segregation of the concrete mix. The Abrams cone first developed for standard concrete 

ASTM slump test has now become the most common SCC acceptance test device. It is used 

to measure slump flow, an important acceptance test to determine concrete workability. 

Simulations of the ASTM Abrams cone show that the slump flow test also provides 

information that allows us to derive rheological parameters such as yield stress and plastic 

viscosity of the concrete, which are usually only obtainable in a lab equipped with a 

viscometer. Lab tests and simulations of the ASTM mini cone (Tregger et al., 2008), show 

promising results in predicting rheological parameters for mortars. This paper will focus on 

an easy-to-use model for obtaining yield stress and plastic viscosity of concrete on e.g. the 

building site. Yield stress and viscosity input simulation values adequately map the self-

compacting range suggested by (Wallevik, 2002).  
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THEORETICAL ASPECT 

Rheology of Fresh Concrete Flow. For Pascalian liquids, meaning incompressible fluids 

(such as concrete) it holds for the fluid velocity vector u that 

  

0=⋅∇ u  (1) 

The governing equation for non-Newtonian fluids called Cauchy’s equation of motion 

(Malvern, 1969) is given by 
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Were g is the gravitational acceleration vector acting on the system, ρ is the material density 

and the stress tensor is σ = - p I + T. Here, p denotes pressure, I the unit dyadic and T is the 

extra stress tensor, associated with the viscosity of the fluid. For concrete being a 

viscoplastic material, the relation used for T is, (Mase, 1970): 

uT Dη2=  (3) 

with Du being the tensor of rate of deformation as can be found in (Goldstein, 1996):  
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It was shown by (Wallevik, 2003) that Equation (2) is not only applicable for homogeneous 

fluids, but from a fundamental physical point of view also can be applied on coarse granular 

systems like fresh concrete. Concrete and other concentrated suspensions are often modelled 

as a Bingham material. It is a viscoplastic material, showing little or no deformation up to a 

certain level of stress. For stress levels above the so called yield stress, τ0, the material flows. 

In order to fit the Cauchy equation, the apparent viscosity η is written as: 
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where uu DD :2  is the shear rate. Equations (1) through (5) define the non-compressible 

viscosity model used for self-compacting concrete in this paper. 

Spread Diameter.  Assuming that material density and sample volume are known, the final 

flow spread at flow stoppage is directly correlated to the yield stress of the material. We are 

also assuming that inertia effects of the spreading flow are neglected for this theory. The 

slump flow may be treated as a one dimensional problem, since the three-dimensional 

Abrams cone will reshape into a one-dimensional flow problem with a propagation of much 

smaller height than its radial spread. This allows one to analyse it analytically. Also, surface 

tension effects are disregarded since they are much smaller than the apparent viscosity of 

concrete. 

The governing equations for this particular case are based on the physical principles stating 

that within the system, mass is conserved (the continuity equation) and Newton’s second law 

F = ma (the momentum equation). So starting out with the equation of continuity and the 



equation of motion for incompressible fluids in cylindrical coordinates (r, θ, z) according to 

Figure 1, (Kokado et al., 1997) state the equation of continuity: 
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as well as the equation of motion (radial direction r): 
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(7) 

Here, vr, vθ, vz are the velocity vector components, τij is the stress tensor. Above mentioned 

simplifications and integration of the equations with the given boundary conditions lead to a 

relation between the yield stress and flow spread diameter depending on the sample density 

and volume: 
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This relation was found by (Kokado et al., 1997) as well as (Roussel and Coussot, 2005). 

(Kokado et al., 1997) derived the yield stress by solving the full equations of continuity and 

equations of motion, whereas (Roussel and Coussot, 2005) described the fluid motion within 

the long-wave approximation. 

Flow Velocity. The initial energy amount affecting flow velocity v at cone lifting time t = 0 

is depending on the material density, its volume and the height of the cone (mgh). As the 

flow propagates, the speed of flow is associated with fluid viscosity. Depending on the 

viscosity, a certain stress level of the fluid will result in a particular shear rate, as can be 

understood from Equation (5).  

It is worth noting that inertia effects might affect the final shape of flow once the typical 

inertia stress (Roussel and Coussot, 2005) 

2vI ρ=  (9) 

Since this value is not considerably (in the order of tenths) lower than the yield stress of the 

material, as can be seen in section Yield Stress. 

Once the flow spread can be determined analytically, the dynamics of the cone spread 

motion may only be captured numerically, using e.g. finite element or the like. Nevertheless, 

in order to grasp the problem and to create a plausible picture of the motion, one will here 

just scratch the surface of the problem by taking a few steps into it in a simplified way. The 

following can be said about the moving fluid propagating circular flow: 

- The value of the plastic viscosity approaches the measured apparent viscosity as 

shear rates are increasing, which can be seen in Equation (5) 

- The height of the flowing radial part of flow is averaged to h 

- The shear rate is then approximated as velocity divided by concrete thickness, v/h  

- The measured viscosity can be approximated as stress τ divided by the shear rate 

- The stress τ is given by ρgh 



This renders the following relation: 
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with A(X) and B(X) being geometrical parameters, depending on the geometry of the cone 

and the location of the measuring point X. Since we are interested in measuring the frictional 

(no slippage) flow over most of the flow domain in order to average the flow time over the 

full concrete spread to obtain higher accuracy, one might be tempted to measure the flow 

time from cone lifting time t = 0 until flow stoppage. However, since it is quite difficult to 

exactly determine the very moment of concrete (slow motion) flow stoppage, we will choose 

a different approach. The flow duration will always be timed at a certain given radius X of 

the flow, e.g.  X = 250 mm, (measuring T500). The flow velocity v is now:  

Xt

X
v =  

(11) 

However, point X is to be normalized with respect to the total flow radius (travelling length 

R), which gives us the dimensionless measuring point X/R. Always using the same 

measuring point X also ensures the same averaged measuring height h (slump flow 

thickness) of the same concrete sample volume. Using Equations (10) and (11) with the 

dimensionless measuring point we can now obtain for a normalized plastic viscosity: 
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Since the measuring point x and h
2
 (X) are chosen beforehand and always kept constant, they 

may be treated as constants when comparing obtained values. This is true also for the 

gravitational acceleration parameter g. We would also like to normalize plastic viscosity with 

respect to specific gravity of the concrete (ρwater/ρ). Also, we are aiming at facilitating 

parameter measurement, which is why the flow spread diameter will be used instead of the 

radius R. Values of interest are now: 
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where e.g. parameter M now incorporates  0.5 A, g, h
2
, ρwater  and 1/X. 

(13) 

THE NUMERICAL MODEL 

The governing equations to be computed are solved by finite volumes. Methods for viscosity 

and stress are also presented below. It is assumed for the concrete to behave as a 

homogeneous fluid, no particles are involved in this model. 

Finite Volumes. Finite Volumes represent a numerical way to solve the partial differential 

equations used to simulate fluid flow as algebraic statements. The obtained values are 

calculated on a meshed geometry. Finite volumes refer to a control volume representing a 

reasonably large, finite region of the flow. Fundamental physical principles are applied to the 

fluid inside every control volume (Wendt, 1992). In this piece of work, Volume of Fluid, 



VOF, method is employed as the interface tracking method for the multiphase model (air and 

concrete). VOF (Hirt and Nichols, 1981) tracks the interphase using a phase marker γ such 

that in a control volume with γ = 0, only phase one is represented and with γ = 1, only phase 

two is represented. 0 < γ < 1 represents an interface in the control volume. The fundamental 

fluid physical properties vary in space according to the volume fraction of each phase:
 

)1(21 γηγηη −+=  and )1(21 γργρρ −+=
                                                                              

Every cell holding a γ value carries a marker, e.g. a distinct colour. 

Papanastasiou.  Viscosity given by Equation (5) will render a singular point for zero shear 

rate (rigid body), which will lead to infinite apparent viscosity. This is avoided by 

introducing the following equation suggested by (Papanastasiou, 1987): 
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The value for k is a very big number, k = 5000 for the simulations shown. 

Yield Criterion.  A three-dimensional von Mises yield criterion is used, since the full 

propagation of flow is to be captured. 

SIMULATIONS 

OpenFoam. Presented simulations were performed with the downloadable software 

OpenFOAM, Field Operation And Manipulation (Weller et al, 1998). The code is an object-

oriented numerical simulation toolkit for continuum mechanics released by OpenCFD Ltd 

available for free (http://www.opencfd.co.uk). It is a large Continuum Fluid Dynamics 

library with different types of solvers. This finite volume solver with polyhedral mesh 

support calculates the mass and momentum equations in their discretized form, which 

guarantees the conservation of fluxes through the control volume. The code is transparent 

and may be tailored by the user to fit the problem to be solved.  

Geometry of the Cone. The Abrams cone has the following dimensions. Its height h(z) = 

300 mm, the bottom diameter is 200 mm and the top diameter is 100 mm. The geometry of 

the cone is shown in Figure 1. 

 

Figure 1. Geometry of the Abrams Cone 



Rheological Input Data. Altogether, 14 different simulations of flow were performed with 

different density, yield stress and viscosity as shown in Table 1.  

Table 1.  Simulated Rheological Input Data of the Concrete 

Density [kg/m
3
] Yield Stress [Pa] Viscosity [Pa

.
s] 

2100 30 10 

2100 45 40 

2100 50 50 

2250 10 50 

2250 15 90 

2250 20 20 

2250 40 10 

2250 40 30 

2250 70 10 

2250 70 20 

2250 90 15 

2400 5 30 

2400 10 130 

2400 45 40 

 

Yield stress and viscosity input simulation values adequately map the self-compacting range 

suggested by (Wallevik, 2002).  

RESULTS AND DISCUSSION 

A high correlation factor R
2
 was achieved for the simulated yield stress and viscosity 

relations.  

Both yield stress as well as plastic viscosity are normalized with respect to the specific 

gravity of the material, rendering τ0 
.
 (ρwater/ρ) and ηpl 

.
 (ρwater/ρ). This allows one to compare 

different concrete mixes. 

Yield Stress. The relation between the yield stress and the final spread length at flow 

stoppage is plotted in Figure 2. Simulated values are compared to theoretical values. The 

simulation trend line (y = 5148.3e
-9x

) is almost coinciding with the theoretical solution. The 

correlation factor R
2
 is 0.92, simulated values of the final slump flow are differing more for 

smaller slumps. Values found above the trend line are of viscosity values below 30 Pa
 
s, the 

values found below the trend line are simulation with a viscosity higher than 30 Pa
 
s. This 

leads to the assumption that viscosity, after all, does play a role for the slump flow. Inertia 

effects cannot be fully disregarded, since the flow propagation may be divided into two 

different types of flow. A faster, initial flow, followed by a collapsed cone flow, which is a 

radial and slower, propagating flow. Comparing this fact to Equation (9), with ρ = 2250 

kg/m
3
, a travelling distance of (height of cone + average final radius)/2 ≈ (300 mm + 330 

mm)/2 = 315 mm and an average spreading time for different types of concrete of about 3 

seconds, an inertia effect of about 25 Pa. As seen in Table 1, this is not considerably lower 

(in the order of tenths) than the material yield stress. 



 

 

Figure 2. Output Data for Yield Stress 

As can be seen, these effects are negligible for larger spreads, where the simulated region is 

closer to the theoretical solution. 

Viscosity. A linear relation for the plastic viscosity of the simulated concrete was found 

according to Figure 3. One may detect a link between plastic viscosity and the product of the 

final spread and tX.  Four different measuring points are presented, X = 450, 500, 550 and  

600. The best correlation factor is given by X = 600. This is related to the fact that the 

slower, radial flow is closer connected to the plastic viscosity and is not dominated by inertia 

effects. However, not all slump flows will reach a diameter of 600 mm. For this reason, a 

measuring point of X = 550 is suggested. The correlations factor is still high, a close enough 

value is better than none. 

 

Figure 3. Output Data for Viscosity 
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The trend line for X = 550 is given by y = 7.2x + 1.5. This relation may be compared to 

Equation (13), linking the normalized plastic viscosity (y) to the product of the final diameter 

2R and time tX, here simply denoted x.  

CONCLUSIONS 

It is quite possible to obtain rheological values with a simple and widely spread testing 

device, the Abrams cone. Both slump flow and the regular T500 are affected by inertia effects, 

which is why a different measuring point is suggested, T550. Once the plastic viscosity has 

been determined, it is also possible to judge for an over or under estimation of the yield 

stress according to Figure 2. Trend lines may be developed for high and low viscosity type of 

concretes. This way, the slump flow value may be adjusted for a more accurate yield value. 

This process is of course facilitated using a film camera to capture the flow of the actual (not 

simulated) concrete, or by a computerized testing device to register the concrete flow 

propagation.  
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