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ABSTRACT 

Supplementary Cementitious Materials (SCMs) have been utilized in commercial concrete 

production around the world for over three decades with ample project track record. While 

initially understood as cement replacements, often merely to improve concrete economy, 

these materials have developed into Sustainability design tools, extending the structural 

concrete Life Cycle, improving Resilience and substituting for Portland cement, thus 

reducing the Carbon Footprint of concrete.  

The U.S. Environmental Protection Agency has recently re-designated Fly Ash, Slag Cement 

& Silica Fume as Recovered Mineral Components (RMCs) that increase concrete Strength 

and Durability; Utilization of RMCs reduces the amount of these materials that would 

otherwise be designated as waste and landfilled. 

Silica Fume is one of the smallest particles incorporated into concrete and its effect on 

concrete Rheology has been evident, when used in shotcrete, for some time.  This has been 

exploited in Self Consolidating Concrete as well as Ultra High-Performance Concrete. 

The synergistic effect of combining silica fume and other SCMs into ternary or quaternary 

concrete mix designs has been shown to provide unique solutions to in-field challenges of 

high-performance concrete applications. 
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INTRODUCTION 

In the United States, the Environmental Protection Agency (EPA) has updated the 

designation of Supplementary Cementitious Material (SCM), for sustainability language, to 

Recovered Mineral Component (RMC).  Three RMCs, fly ash, slag cement and silica fume 

are designated as meeting the requirements of the Resource Conservation & Recovery Act 

(RCRA) when included in a concrete mix design.  RMCs are pre-consumer waste materials, 

originating from mineral conversion industries that initially had been land-filled until their 

beneficial characteristics to concrete were discovered and applied.  What differentiates RMC 
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from SCM is that RMC utilization directly eliminates landfill storage of waste materials.  In 

2008 a report to Congress [EPA 530-R-08-007] identified the positive environmental impacts 

per metric ton of RMC substituted for ordinary Portland cement (OPC), as listed in Table 1.  

These impacts are also presented per pound, or kilogram, of utilization for each of the three 

EPA-designated RMCs in Table 2, as well as their contribution of carbon footprint in 

kilograms per metric ton, as compared to OPC. In Europe, and the UK, the term SCM is more 

commonly used. 

 

RHEOLOGY 

The concrete utilized for some of the vertical elements in the construction of 1 World Trade 

Center in New York City is a recent example that combined all three of the RMCs together 

with OPC in one novel concrete mix design.  The concrete’s total binder content of “only” 

837 lbs/yd3 (518 kg/m3), which yielded average compressive strengths exceeding 16,000 psi 

(110 MPa), was proportioned as 55% slag cement, 35% OPC, 7% fly ash and 3% silica fume.  

Despite a very low water to total-cementitious-binder ratio (W/B) of 0.25, the concrete was 

produced and delivered to the project site as Self-Consolidating Concrete (SCC).  The silica 

fume, at its low inclusion rate of 3% of all binder materials, probably contributed more to the 

rheology in this concrete, than to the high ultimate compressive strength. This strength 

showed a very high binder efficiency of 18.5 psi/lb (0.2 MPa/kg).  In comparison, an average 

f’c=4,000 psi (28 MPa) conventional concrete mix design, with an average 500 lbs/yd3 (297 

kg/m3) of OPC, has a binder efficiency of 9 psi/lb (0.1 MPa/kg). Such a mix would yield a 

carbon footprint of approximately 230 kg/yd3 (300 kg/m3), of which 95% is due to the OPC. 

The utilization of three RMCs in the f’c=14,000 psi (96 MPa) designed concrete on 1 World 

Trade Center, reduced the OPC quantity by approximately two-thirds of the total binder 

content, and afforded a significantly lower carbon footprint of 168 kg/yd3 (218 kg/m3). 

As in the before mentioned project, where a quaternary mix design was used, it has become 

modern practice to combine various RMCs, not only to achieve a lowest possible carbon 

footprint but also to take advantage of the synergies between them that impart desirable 

engineering properties.  In the plastic state, inclusion of silica fume alongside fly ash or slag 

cement can offset delayed setting time and boost early strength gain.  The water demand of 

silica fume that can occur at high dosages, can be offset when used in lower dosages and in 

combination with fly ash or slag, as shown in these tables. 
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Compared to common concrete ingredients, silica fume is a very small particle size, with a 

high specific surface area, having rheological attributes that increase yield stress and plastic 

viscosity, and requires additional lubricant to maintain a desirable workability level.  

Conversely, silica fume’s packing density characteristics decrease yield stress and plastic 

viscosity, depending on the synergy between other concrete ingredients and the percentage of 

silica fume in the total binder content.  Figure 1 demonstrates silica fume’s variable effect on 

concrete viscosity as compared to the linear behavior of other non-aggregate ingredients.  

Silica fume’s rheological properties enable workability-engineering for specific applications.  

In contrast to lowering viscosity, as in the 1 World Trade Center design, an 8-12% silica 

fume inclusion in shotcrete, for example, increases mix viscosity, which is ideal for building 

up thicker layers with minimized rebound and slippage. Walt Disney Theme Parks of 

Orlando constructed the 300 foot (100m) tall “Expedition Everest” feature with a specialized 

shotcrete mix design containing silica fume and a hydration control admixture - needed to 

maintain surface plasticity for several hours after application – in order for the artists to carve 

a realistic mountain-scape onto its surface. 

 

MILESTONES FOR CONCRETE WITH RMCs. 

While fly ash and slag cement where initially utilized for economy, as a replacement for 

OPC, silica fume provided concrete with enhanced mechanical properties such as 

compressive and flexural strength, modulus of elasticity, abrasion and impact resistance.  

Reduced permeability, achieved by incorporating silica fume into the concrete design, is 

reflected in enhanced durability in resisting chemical and sulfate attack, or mitigating alkali-

silica reactivity.  Benefits in concrete permeability reduction were also realized for 

combinations with fly ash and slag cement, at much earlier ages although, in their own right, 

these RMCs can achieve durability enhancement for concrete at a later stage. While this 

slower reactivity is utilized in specific applications such as mass concrete, it is often the early 

age resistance of a concrete that will determine the service life in a harsh environment, hence 

the addition of the faster reacting silica fume. Introduction of silica fume into widespread 

commercial availability in the United States began in the early 1980’s, and versatile 

applications have evolved over the last few decades, as presented in the following selection 

of projects, mostly in combination with fly ash or slag cement: 
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1983 – The Kinzua Dam Stilling Basin, Pennsylvania 

 The US Army Corps of Engineers tested various aggregates to provide concrete with 

superior abrasion resistance when replacing the severely eroded stilling basin at the Kinzua 

Dam (Figure 2) in Pennsylvania.  This research was to find the optimum design to resist the 

abrasion and erosion caused in the basin. The dam had been built in 1967 and the stilling 

basin floor replaced in 1974 with a pure OPC / high strength aggregate concrete. This had 

failed by 1983, as shown in the figure. A silica fume concrete, using local aggregates, 

increased the abrasion performance, as shown in the graph, by increasing both the 

compressive strength, specified at f’c=12,500 psi (87 MPa), and the bond to the aggregate. 

The Kinzua Dam spilling basin rehabilitation became one of the first large scale applications 

of silica fume concrete in the United States, and the repair showed little wear damage in the 

diver’s inspection in 2013. As of 2018, the repair has now lasted more than 5 times longer 

than the original concrete. 

 

1988 – The Great Stupa of Dharmakaya, Colorado 

Before the start of this unusual project, to be built by volunteer labor over a long period of 

time, at an elevation above 8,500 ft (2,500 m), a surprising request for a 1000-year concrete 

service life circulated the industry.  Statistical analyses and novel concrete technology, with 

the inclusion of silica fume and synthetic air-entraining admixture into the mix design, 

provided such a potential, with a ternary, low water-binder ratio, high strength mix design 

(Figure 3).  Exceptional concrete quality field control was required to maintain concrete mix 

characteristics, including high workability for placement, for the 90-minute transportation 

time. Completion of this project was in 2005, after nearly two decades of work. 

 

1990 – Bridge Deck Overlays, Ohio 

The Ohio Department of Transportation structures, located in the US ‘rust-belt’, have a 

greatly increased rate of reinforcement steel corrosion, due to the higher than average yearly 

freezing and thawing season. The main factor causing this is increased use of road salt to melt 

ice on the highways and in particular on bridges.  O-DOT pioneered the specification of silica 

fume as part of the concrete mix design to combat this (Figure 4), alongside a “very low 

permeability” rating of less than 1,000 coulombs, as determined by the Rapid Chloride 

Permeability test AASHTO T-277. 

 

1992 – Tsing Ma Bridge, Hong Kong 

The Lantau Link in Hong Kong comprises the Tsing Ma suspension bridge linking Tsing Yi 

to Ma Wan; viaducts crossing Ma Wan; and the Kap Shui Mun cable-stayed bridge linking 

Ma Wan to Lan Tau. The Tsing Ma Bridge (Figure 7) is a major Hong Kong landmark, with a 

main span of 4500 ft. (1377 m), the world’s longest to carry both road and rail, and its 

concrete towers are 675 ft. (206 m) tall. Construction of Tsing Ma Bridge began in May 1992 

and was completed in May 1997. Other statistics for this bridge include: a total length of 

7200 ft. (2200 m); shipping clearance of 203 ft. (62 m); and a volume of concrete of 650,000 

yd3 (500,000 m3).  

The concrete used in the construction consisted of two ternary mixtures, one containing 

ordinary Portland cement (OPC), ground granulated Blastfurnace slag (ggbs) and silica fume, 
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the other containing OPC, fly ash and silica fume. The OPC, ggbs and silica fume ternary 

blend, used for slip-forming the towers, had a cementitious weight ratio of 30% Portland 

cement, to 65% slag cement and 5% silica fume. This allowed pumpability over the distance 

from the production plant and the vertical height to the point of placing, and lowered the heat 

evolution, to reduce thermal stress and delayed ettringite formation (DEF) in the large mass 

concrete tower bases. The mix was also designed to give a very high resistance to chloride 

penetration for the marine environment. The target strength for this mix was 9,400 psi (65 

MPa), but it achieved over 11,600 psi (80 MPa) at 90 days. The OPC, fly ash, silica fume 

ternary blend was a ratio of 70% Portland to 25% fly ash and 5% silica fume and was used 

for the support columns and other elements of the bridge. 

 

 

1993 – The Solid Waste Authority of Palm Beach County, Florida 

In this project, an alternative was sought to the customary 2” (5 cm) thick armored floor 

topping overlays that had an average service life of only two to three years, causing repetitive 

expensive rehabilitation and time-consuming facility shutdowns during repairs. Field research 

conducted on-site developed an alternative concrete design incorporating low W/C, a fly ash-

blended OPC along with a very high silica fume percentage for a self-leveling, one-pass 

finish concrete design (Figure 5).  This type of concrete design gave the Solid Waste 

Authority a decrease of roughly 50% in construction time at approximately half of the normal 

expenditure for the rehabilitation of their tipping floor systems.  Service life of the tipping 

floors has nearly tripled to seven years.  Similar concrete mix designs, with high silica fume 

percentages of up to 20% have now found multiple applications in the refinery, processing 

and chemical industries. 

 

1997 – Nuclear Storage Facility, Hanford 

The construction of the radioactive canister storage facility placed utmost consideration on 

crack control for its concrete structure, which translates into tight temperature control for this 

mass concrete application. (Figure 6).   Engineering methods such as cooling the concrete, 

limiting concrete temperature at point of delivery and lowering the heat of hydration, by 

substituting OPC with both fly ash and silica fume, successfully provided a project-suitable 

high-strength mass concrete. 

 

2000 – Four Seasons, Miami  

At 750 ft. (230m) height it is the tallest structure, south of Atlanta, in the southeast USA.  

Designed for resisting high wind loads in ‘hurricane country’, dense steel reinforcement was 

required in the vertical structural elements. A high-strength, high modulus of elasticity and 

highly workable concrete mixture was designed to flow through and around the steel and give 

a tightly integrated unit. The f’c=10,000 psi (MPa) concrete design employed a 50-50 ratio of 

slag cement and OPC which aided in maintaining a very low W/C in a hot weather concreting 

environment, and a 5% silica fume addition to achieve a modulus of elasticity typically not 

attainable with the local aggregate that was used. (Figure 8).  Believed to be one of the 

earliest mass-produced, cast-in-place, SCC applications, the concrete was delivered year-

round through the extreme hot weather season without concrete temperature restrictions. 
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TARGETED PERFORMANCE 

 

High-rise structures continue to impress not only in newly achieved heights, but in novel 

combinations of cement substitutes such as RMCs, to achieve both plastic and hardened 

performance. The mixtures must not only be to mechanical design requirements in the 

finished elements, but increasingly are required to have extreme distance pumpability with 

retention of workability.  

 

2009 – The Burj Khalifa, Dubai 

 An 8,700 psi (60 MPa) OPC / fly ash / silica fume ternary blend was used for the foundation 

piling, and a high-strength ternary mix concrete was pumped over 2,000 feet (620m) in the 

world’s tallest building, as of 2018 (Figure 9). A similar mix design is being used in the 

Kingdom Tower in Jeddah and for the new Dubai Tower, both vying to be the next ‘World’s 

Tallest’.  

 

2014 – STEP project, Abu Dhabi 

The Strategic Tunnel Enhancement Programme (STEP) is a large diameter, gravity-driven, 

tunnel network, roughly doubling wastewater treatment capacity (Figure 10). 390,000 yd3 

(300,000 m3) of concrete were used for 52 total miles (84 km) of tunnel, designed for high 

strength and impermeability.  The class C40/50 concrete contained 6% silica fume and the 

class C40/20 was a fly ash blend with 5% silica fume with average compressive strengths 

exceeding 9,000 psi (60 MPa) and a very low Rapid Chloride Permeability to ASTM C1202. 

During construction of a similar waste water project – a pumping station in Jeddah, Saudi 

Arabia, the design had to ensure placement without loss of cohesion. This was for a 31,400 

yd3 (24,000 m3) continuous pour of SCC that underwent a drop chute placement of 230 feet 

(70m) and achieved this without segregation or bleeding (Figure 11). 

 

DESIGN LIFETIME 

The long-term durability of structures came into focus in the mid-to-late 1980’s as it became 

evident that concretes with exposure to chlorides, whether by natural (vicinity of salt water) 

or man-made causes (de-icing salt application), seemed to have an increased rate of 

deterioration than observed on past structures, resulting in a decrease in service life.  These 

phenomena could be due to decreasing the concrete cover over the structural reinforcement 

steel as part of the trend to produce less voluminous structures, slender and more complex in 

design.  Less concrete cover protecting the reinforcement steel provides for easier and 

accelerated access for deleterious materials, such as chloride, to penetrate through concrete.  

Rather than sacrificing the benefits of economy, aesthetically pleasing architecture or longer 

spans in the structures, new corrosion-resistant concrete design initially specified silica fume 

and corrosion inhibitors to combat the rapid deterioration effects. This soon evolved into 

specifying certain durability characteristics and thus the Design-Life or Service-Life of the 

structure.   
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1997 – The Confederation Bridge, New Brunswick 

This was one of the early calls for a 100-year design life for the concrete in such a 

construction.  This 8-mile (13 km) long bridge (Figure 12) would be adversely exposed to 

ice, rogue waves, freezing and thawing cycles, impact and abrasive forces.  The bridge was 

constructed between 1993 and 1997 and utilized both fly ash and silica fume. This was based 

on the performance of a similar mix had, used a few years prior to this, on the very large 

Hibernia oil drilling platform, situated nearby in the Atlantic Ocean off New Brunswick, and 

exposed to similar environmental elements. 

 

2005 – East Sea Bridge, Shanghai 

This ‘twin bridge’, each side three lanes, extends 20 miles (32.5 km) from Shanghai’s Luchao 

Port to the new Shanghai deep-sea port (Figure 13). It was constructed in less than three 

years, between 26th June 2002 and the 25th of May 2005, using two multiple-binder blends, 

one ternary and the other quaternary. The bridge design had an extensive list of climatic 

resilience, chemical and physical resistance requirements for its 100-year service life target, 

including surviving a Richter 7 earthquake. 

The compressive strength requirements were 5,100 psi (35 MPa) and 7,250 (50 MPa) for 

various applications. The two binders used in the mixture proportions were a ternary blend of 

Portland cement, slag cement and fly ash, and a quaternary blend of Portland cement, slag 

cement, fly ash and silica fume. These binders were ‘pre-blended’ at the cement factory 

allowing for only two silo capacities at each production plant (onshore and offshore), 

although different binder contents were used for various design elements of the bridge. 

 

2007 – I-35 W Bridge, Minneapolis 

When the bridge suffered a devastating collapse, it was rebuilt within a year (Figure 14), 

employing concrete designs using all three RMCs. This was to satisfy stringent durability 

requirements and for sustainability and longevity.   

2017 – The Panama Canal 

One of the most recent ‘100-year service life’ design concepts was for the recently completed 

Third Set of Locks project (Figure 15). Here over 2.5 million yd3 (2 million m3) of mass 

concrete utilized natural pozzolan and silica fume for low permeability.  

 

ONWARD 

 Ultra-High-Performance Concrete (UHPC) is concrete with compressive strength in 

excess of 22,000 psi (150 MPa) and with exceptional durability characteristics.  With W/B at 

or below 0.20, a very high silica fume content of 20-30% and no coarse aggregate, it nearly 

crosses the material definition from concrete into a composite.           
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In 2014, the Viaduc Chillon in Switzerland received a 2 inch (5cm) thick overlay of UHPC 

for a rehabilitation project where some 4,600 yd3 (3,500 m3) of UHPC were placed with a 

modified paving machine. 
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Fig. 1 – Material Influence on concrete viscosity 

 

 

               
 

Fig. 2 – Kinzua Dam, Pennsylvania 
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Fig.3   The Great Stupa of Dharmakaya 

 

 

              
 

Fig. 4 – Ohio Department of Transportation 
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Fig. 5 – Solid Waste Authority, Palm Beach County, Florida 

 

 

              
 

Fig. 6 – Radioactive Waste Canister Storage, Hanford, Washington 
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Fig 7 – Tsing Ma Bridge, Hong Kong 

 

 

              
 

Fig. 8 – The Four Seasons, Miami, Florida 
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Fig 9 – Burj Khalifa, Dubai. 

 

 

 
 

 

Fig 10 – STEP project, Abu Dhabi 

 

 

 

 



 

15 

 

              
 

Fig. 11– Waste Water Pump Station, Jeddah, Saudi Arabia 

 

 

 

 
 

Figure 12 – Confederation Bridge, New Brunswick 
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Figure 13 – The East Sea Bridge, Shanghai. 

 

 

 

 
 

Figure 14 – I-35 W, Minneapolis 
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Figure 15 – The Panama Canal 

 


