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ABSTRACT  

A possible solution to decrease the CO2 footprint caused by the cement industry and to 

enhance the transition to circular economy is to use slags as Supplementary 

Cementitious Materials (SCM). The study presented here focuses on valorizing and 

investigating the reactivity and mechanical properties of blended binder systems 

combining Modified Iron Silicate (MFS) slag and Ordinary Portland Cement (OPC). 

MFS slag is a fumed by-product synthesized during the production of Copper (Cu) 

metal. This slag can be used as possible alternative SCM due to its pozzolanic 

behaviour. To study the replacement level in relation to reactivity and strength 

development, replacement levels of 15, 30 and 50 wt% of MFS-slag in ordinary 

portland cement are analyzed. The work can be divided into two categories: 1) 

assessing the reactivity through thermogravimetric analysis (TGA) and 2) evaluating 

the compressive strength (as a function of time) of mortar with MFS-slag after 2, 7, 28 

and 90 days. TGA at 7, 15, 28 and 90 days allows to determine the reduction of 

portlandite content which gives an indication on the pozzolanic reactivity. Reactivity 

of MFS-slag blended systems is also determined relative to inert filler blended systems 

to discern between the reactive behavior of the MFS-slag and the filler effect.  

Keywords: Supplementary cementitious materials, modified iron silicate, ordinary 

portland cement, thermogravimetric analysis. 

INTRODUCTION 

As the cement industry is one of the main contributors to the global CO2 footprint, a 

possible solution has to be found to decrease CO2 emissions (Worrell et al., 2001; 

Fifth International Conference on Sustainable Construction Materials and 

Technologies. http://www.claisse.info/Proceedings.htm 
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Benhelal et al., 2013; US Geological Survey & Orienteering S, 2017). One of these 

solutions can be to use Supplementary Cementitious Materials (SCM) such as slags. 

Usage of slags in concrete decreases the need for Portland clinker production and so 

the industrial CO2 footprint (Scrivener and Kirkpatrick, 2008). Pyro-metallurgical 

processes involving oxidation and reduction of Copper (Cu) ore or scrap to synthesize 

Cu metal also produce slags as by-product (Schlesinger et al., 2011). Cu slag’s 

chemical composition varies depending on the initial Cu source and the processing 

condition. However, Cu slags are mainly composed of SiO2, FeO, and CaO, similarly 

to other natural/artificial pozzolanic materials (Piatak, Parsons and Seal, 2015).  

Several types of industrial by-products such as blast furnace slag or fly ash are widely 

used in the cement industry as SCM (Lothenbach, Scrivener and Hooton, 2011). These 

by-products are rich in an amorphous phase (typically >90 wt%) containing oxides of 

Si, Ca, Al and Fe and are latent hydraulic or pozzolanic. When for instance blast 

furnace slags are added together with ordinary portland cement (OPC) in a mortar or 

concrete mix, the amorphous phase reacts with the alkaline pore solution (enriched in 

CH) precipitating hydrates of calcium silicates (C-S-H). These slags can be used as 

SCM without modification and can satisfy the requirements of demanding construction 

applications. In terms of literature, a wide range of publications has proven that usage 

of amorphous materials  such as metakolin and blast furnace slags in combination with 

OPC can enhance the mechanical properties and durability of concrete (Werner et al., 

1987; Hooton, 2000; Siddique and Klaus, 2009; Juenger et al., 2011).   

Literature has already revealed that Cu slags can be used as a SCM without 

compromising the mechanical properties of OPC concrete. In the work of Moura et al 

(Moura, Gonçalves and Lima, 2007), Cu slags were used as SCM and the effect on 

strength and durability was examined. It was confirmed that replacement of OPC with 

20 wt.% Cu slags increased the compressive strength at late ages. Moura et al also 

stated that use of Cu slag in concrete could improve the durability.  

Edwin et al (Edwin, Gruyaert and De Belie, 2017) assessed the reactivity of the Cu slag 

by incorporating it in a “Reactive Powder Concrete” (RPC) from 0 to 20 wt.%. 

Findings published showed that the strength of the RPC with 20wt.% Cu slags was 

better than the reference mixture at 28 days. However, the pozzolanic reactivity 

determined by the Chapelle test was found to be low. In the work of Edwin et al (Edwin 

et al., 2016), the reactivity and effect of Cu slag as SCM in ultra-high performance 

mortar was assessed by isothermal calorimetry, strength activity index, Chapelle test 

and Frattini test.  The final conclusions were that 1) addition of Cu slags slows down 

the hydration/heat flow of the cement paste and 2) rate of pozzolanic activity of the Cu 

slag depends on temperature, curing age and particle size. Tixier et al (Tixier, 

Devaguptapu and Mobasher, 1997) studied the effect of Cu slag on the hydration and 

mechanical properties of cementitious mixtures. Cu slag was blended with lime to test 

its pozzolanic behavior.  XRD/TGA (X-ray diffraction / thermogravimetric analysis)of 



 
 
 
 

the Cu slag/lime samples indicates a decrease in the available CH content which is an 

indication of pozzolanic reaction. Mechanical properties of the concrete incorporating 

SCM showed a significant increase in the compressive strength. This increase in the 

compressive strength is due to the combination of filler and pozzolanic effect. 

In this paper, reactivity and mechanical properties of paste/mortar made with a binder 

consisting of processed Cu slag, more correctly designated as “Modified Ferro silicate 

(MFS) slags”, as SCM along with OPC were studied. These MFS slags are similar Cu 

slags as investigated by Edwin et al(Edwin et al., 2016), however an additional fuming 

process of this slag was carried out to turn it from a by-product into a mineral. In order 

to enhance the transition towards sustainability, the goal is to use these clean 

pozzolanic MFS slags as SCM in combination with OPC. Reactivity and hydration 

products of the SCM paste were analyzed using TGA. Mortar with MFS slags with 

replacement levels of 15, 30 and 50 wt% of MFS-slag in OPC were prepared to evaluate 

the compressive strength.  

EXPERIMENTAL PROCEDURE 

Patented Modified Ferro Silicate (MFS) slag (WO 2016156394 A1) is used as the raw 

material along with reference materials such as OPC (CEM I 52.5 N) and inert filler 

(quartz flour type M10). Chemical and mineralogical characterization of the raw 

materials were performed through X-ray fluorescence (XRF) and XRD. Specific 

surface area and particle size distribution of the raw materials were assessed by the 

Blaine method according to EN 196-6 and laser diffraction analysis respectively. 

Binders were prepared containing replacement levels of 15, 30 and 50 wt% of MFS-

slag in OPC (specimens indicated with letter M), along with controls containing the 

same replacement percentages of inert filler (specimens indicated with letter R), and 

an OPC reference (Table 1). The water/solid ratio was kept constant at 0.5 for all pastes. 

Reactivity of the binders in the hydrated pastes was assessed after 7, 15, 28 and 90 days 

through TGA. Hydration of the pastes at their respective ages was stopped by placing 

the crushed paste in isopropanol for 4 h and filtering using a 2.7 µm pore size filter. 

Dry filtered pastes were stored in a vacuum chamber to avoid further hydration. TGA 

was performed to quantitatively evaluate the presence of CH, by means of a TA 

instrument SDT2960 (TG-DSC). The experiment was carried out in an Aluminium (Al) 

crucible, with a heating rate of 10 °C/min in a N2 atmosphere. Thermal analysis 

software (Proteus analysis software was used to measure the quantitative presence of 

CH in all pastes. Single measurements were performed for a series and no repetitions 

were carried out. Compressive strength was assessed on OPC, 15M, 30M and 50M 

mortars (at time of preparation of this paper the test results on the 15R, 30R and 50R 

specimens were not yet fully available), prepared as per EN 196-1 and cured at 20 ± 1 

°C and 95 % relative humidity for 24 h. Later the mortars were demolded and stored 

in a curing chamber at 20 ± 1 °C and 95 % relative humidity until the compressive 

strength were performed.  



 
 
 
 

 

Table 1. Binder composition in wt.% 

Mortar/Paste  OPC MFS M10 

OPC 100 0 0 

15M 85 15 0 

30M 70 30 0 

50M 50 50 0 

15R 85 0 15 

30R 70 0 30 

50R 50 0 50 

 

RESULTS AND DISCUSSION 

Characterization of Starting Materials  

Tables 2 and 3 provide the chemical and mineralogical composition of the MFS slag. 

MFS slags mainly possess oxides of Fe2+ or Fe3+, Si and Al. Mineralogical analysis 

through X-ray diffraction shows more than 90 wt% of MFS slag as amorphous phases 

with presence of minor content crystalline phases such as spinel and metallic iron.  

Table 2. Chemical composition of the MFS slags 

Oxides  FeO/Fe2O3 SiO2 Al2O3 CaO Others  

wt.% 40.9 32.3 11.0 3.9 11.9 

 

Table 3. Mineralogy of the MFS slag 

Phases  Wt% 

Amorphous  92.7± 0.8 

Spinel  6.7  ± 0.6 

Iron  0.7  ± 0.2 

 

Table 4 provides the specific surface area and particle size distribution of the starting 

materials. MFS slags were milled in an attritor grinding process for a specific time to 

achieve a similar particle size distribution and specific surface area as the OPC. Also, 

the inert filler material was selected to have similar characteristics.  

Table 4. Particle size distribution and Blaine surface of the starting materials 

Starting 

materials                   

                Particle size  

 

Specific 

surface area 

(cm2/g) d10 (µm) d50 (µm) d90 (µm) 

OPC 1.316 8.912 30.192 4300 ±235 

MFS 2.928 12.087 45.514 3800 ±250 

M10 3.704 10.963 40.276 4000 ±225 



 
 
 
 

Reactivity Assessment Through Thermogravimetric Analysis 

Mass as a function of temperature as well as its derivative (rate in mass change) of the 

hydrated pastes after 90 days is shown in Figure 1. cement is usually composed of 

mineralogical phases such as C3S, C2S, C3A and C4AF which reacts with H2O to 

produce hydration product. The important hydration reaction product of the cement 

paste are C-S-H and CH (Sha, O’Neill and Guo, 1999). Wide range of authors have 

already studied and described in detail the thermal decomposition of the hydrated 

cement paste. Major decomposition of the hydrated pastes takes place between 30 to 

105°C, 110 to 170°C, 180 to 300°C, 450 to 550°C and 700 to 900°C.  

1) The first region between the temperature range 30 to 105 °C is mainly due to 

the dehydration of evaporable water (Alarcon-Ruiz et al., 2005).  

2) The region in the temperature range between 110 to 170°C is due to the 

decomposition of C$H2, AFt, SO4
2--AFm, CO3

2--AFm (as per cement notation) 

(Zhou and Glasser, 2001; Alonso and Fernandez, 2004).  

3) The loss of bound water from the dehydration reactions from C-S-H takes 

places in the temperature range of 180 to 300°C (Nonnet, Lequeux and Boch, 

1999; Zhou and Glasser, 2001; Alarcon-Ruiz et al., 2005; Pane and Hansen, 

2005).  

4) Mass loss in the temperature region between 450 to 550 °C corresponds to the 

dehydration of CH (Zhang and Ye, 2012; Deboucha et al., 2017).  

5) The final decomposition occurs due to the decarbonation of carbonate phases 

in the temperature range between 700 to 900 °C (Grattan-Bellew, 1996; 

Deboucha et al., 2017).  

                    

The percentage of CH can be calculated by the formula 1 where the parameter mloss 450-

550 °C is included for considering the dehydration of CH and the mass conversion factor 

of H2O to CH can be calculated by the ratio of molecular weight (MW) of CH and H2O 

(Chen et al., 2007). To be more accurate, for each specific paste, the 450-550 °C 

boundaries were slightly adjusted given the exact location of the CH region in Figure 

1. However, the mass loss due to CH decomposition generally lays between 450 and 

550°C which was determined by tangent method.   

Figure 2 shows the presence of CH in the hydrated SCM paste at the different ages of 

7, 15, 28 and 90 days with comparison to the reference of paste made from inert filler 

and OPC. It can be clearly seen that all SCM pastes synthesized with the MFS slag 

show presence of less CH compared to the paste made from inert filler and OPC, 

especially at 28 and 90 days. This indicates that CH formed as the reaction product 

during OPC hydration is dissolved in the pore solution and consumed by the MFS slag 

through pozzolanic reaction.  



 
 
 
 

 

Figure 1. TGA curve of the powdered paste after 90 days: a) mass loss (%) vs 

temperature (°C), and b) rate of change of mass (mg/°C) vs temperature (°C) 

   

 

Figure 2. Calculated CH content in wt.% with OPC as reference a) 15M vs 15R, b) 

30M vs 30R and c) 50M vs 50R 

 

 



 
 
 
 

However, 7 days TGA analysis of MFS slag and inert filler paste showed presence of 

high CH content compared to the OPC paste which is possibly due to the enhancement 

of OPC hydration by filler effect, thus producing more CH (Cordeiro et al., 2008). 

Moreover slight decrease in the trend of  CH content  between 28 days and 90 days of 

the inert filler paste especially 30 R and 50 R indicates that quartz filler though assumed 

inert, consumes a small amount of CH. A similar observation has been made and 

discussed in the literature (Cyr, Lawrence and Ringot, 2005; Moesgaard et al., 2011; 

Deschner et al., 2012). 

Strength Development of SCM Mortars Synthesized From MFS Slags  

Evaluation of the compressive strength was carried out among all MFS mortars, and 

also compared to 85%, 70% and 50% of the OPC compressive strength as nominal 

reference values (Figure 4). Note that this comparison is not completely fair, given the 

difference in underlying hydration mechanism, but allows to observe the trends better. 

The 2 days strength of the synthesized SCM mortars such as 15 M and 50 M was lower 

than the respective reference values taking into account the dilution of OPC, whereas 

the 2 days strength of 30 M was similar to the reference value. This shows that the 

replacement with MFS slags leads generally into a decrease in the 2 days compressive 

strength, even surpassing the strength reduction expected from the decrease in OPC 

content. This might be attributed to the MFS slag delaying the OPC hydration and the 

MFS slag reaction itself requiring more time.  

At 7 days, the observed trend at 2 days, is turned around with higher strengths up to 55 

MPa and 40 MPa for respectively 15 M and 30 M. At 28 and 90 days, all synthesized 

MFS mortars showed high compressive strength compared to their OPC content. 

Strength development of the SCM mortar synthesized from MFS slags showed slow 

increase from 2 days to 7 days and high increase in the period from 7 to 90 days 

compared to the reference value. This kind of strength development is due to the 

presence of MFS slag itself and linked to the possible mechanism of slow dissolution 

of amorphous silica in the alkaline pore solution (Barret, Ménétrier and Cottin, 1977) 

and the formation of strength providing phases such as C-S-H and C-A-S-H which will 

be further investigated.  



 
 
 
 

 

Figure 3. Mean compressive strength of synthesized mortars a) 2 days, b) 7 days and 

c) 28 days d) 90 days 

CONCLUSION  

The present work proved that MFS slag can be a promising alternative pozzolanic 

material. MFS slag, used as a substitute for OPC, contributes to the mechanical 

properties at later ages (starting to be observed at 7 days and strongly observed at 28 

days). Assessment through TGA based on the relative reduction in CH content 

provided suitable information on the MFS slag reactivity.  

In particular the following points can be emphasized 

1) TGA analysis predicted presence of less CH concentration among all MFS slag 

binders compared to the inert filler and OPC binder after 28- and 90-days 

suggesting CH was consumed through pozzolanic reaction.  

2) Due to the existence of SiO2 rich amorphous phase in MFS slags, strength 

development showed an increase above the expected strength considering the 

reduction in OPC content at the age of 28 days.  

3) The observed strength increases can possibly be attributed to a combination of 

pozzolanic reaction and filler effect which is under further investigation. 
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