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ASTM C1202 – Names for the Test 

• Standard Test Method for Electrical Indication 
of Concrete’s Ability to Resist Chloride Ion 
Penetration (in the ASTM). 

• The Rapid Chloride Permeability Test (after 
Whiting – who invented the test)  

• The Coulomb Test (it measures Coulombs) 



ASTM C1202: Rapid Chloride Penetration Test (RCPT) 

Mesh electrodes

60 V

Concrete sample

Solid acrylic cell

Reservoir 0.3N NaOH
Reservoir 3% NaCl

Coating

Charge Passed 
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Chloride Ion 
Penetrability 

>4,000 High 

2,000 - 4,000 Moderate 

1,000 – 2,000 Low 

100 – 1,000 Very low 

<100 Negligible 



The Problem 

• At the start of the test there is no chloride in 
the sample so the current depends on other 
charge carriers (primarily OH-) 

• Adding pozzolans to concrete depletes the 
OH- 

• Thus pozzolanic mixes can give misleading 
results 



The new test 
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Using the mid-point voltage to identify 
cement replacements 



Electro-diffusion model for chlorides in concrete 

• Nernst-Planck equation: 
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• Charge electroneutrality (Kirchoff’s law): 
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Solving the hard way –  
 

assuming E is constant 
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Section through sample during test 

Voltage 
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Modelling a thin slice of the sample for a short time step 
 

Apply Kirchoff’s law : current in = current out 

Electromigration into element  -  
set by field E which was 
calculated for the last element 

Electromigration out of element – 
we can set this for charge neutrality 
by adjusting the field E 

Diffusion in and out – fixed by 
concentration gradient 

Final adjustments are needed to get the correct total voltage across the sample. 



INPUTS 
 

Calculate diffusion flux for each ion in 
all space steps 

 
Calculate electro-migration flux for each 

ion in all space steps 

Set linear voltage drop for all space 
steps 

Correct the 
voltage in all 

space steps to 
prevent charge 

build up 
MEMBRANE 
POTENTIAL 

 

  
Is there total charge surplus  

in any space step? 

No Reach time limit? 
 

Increase 
time Yes 

Key innovation in the computer code 



Current in amps at different times in hours vs position 
in mm from the negative side 
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Model output for 
current and voltage 

Current vs time with no voltage 
correction (average) 
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Voltage adjustments at different times
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Optimization Model 

Transport properties 
 

• Intrinsic diffusion coefficient (Cl-) 
• Intrinsic diffusion coefficient (OH-) 
• Intrinsic diffusion coefficient (Na+) 
• Intrinsic diffusion coefficient (K+) 
• Porosity (ε) 
• Chloride binding capacity factor (α) 
• OH- conc. of the pore solution  

Experiments 
 

- Current 
- Membrane potential 

Electro-
diffusion 
model: 
Voltage 
control 

 

Artificial 
Neural 

Network 

Network training 

Data base 



% 

Mix w/b OPC 
% 

PFA 
% 

GGBS 
% 

OPC 0.49 100 0 0 
30%PFA 0.49 70 30 0 

50%GGBS 0.49 50 0 50 

Experimental programme 

Inputs of the neural network 



Chloride related properties from voltage control model  
You can’t get this lot with the new 5 minute test! 



“Traditional” diffusion test 

For modelling: 
• The boundary condition is 

not zero voltage because 
the ends of the sample are 
not short-circuited.   

• A voltage can be 
measured. 

• The voltage in the model is 
set to give zero current. 
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(1) Current control model - zero current (properties calculated)
(2) Model with non-zero current, no voltage correction (properties calculated)
(3) Model with no binding, no voltage correction and just diffusion of Cl (Dint-cl calculated)
(4) Equation 7 (Dint-cl calculated)
(5) Equation 7 (Dint-Fick)

Traditional diffusion test (no applied voltage) 

Equation (7) is the integral of Fick’s law.  Dint = Intrinsic diffusion coefficient 
(3) and (4) coincide – showing that the computer model gives the same results as 
integrating Fick’s law if the ion-ion interactions are switched off. 
(5) Is based on experimental data 



Future work 

• Controlled power tests to avoid overheating. 
 

• Voltage steps to avoid the need for a salt 
bridge. 



Conclusions 

• The electrical model can be used with 
an artificial neural network (ANN) to 
give good values for transport 
properties. 
 
• Even when no voltage is applied, an 
electrical model is needed to simulate 
a diffusion test because of ion-ion 
interactions. 



 

Thank you 
www.claisse.info 
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